姓名:黄栋
职位:工学博士、讲师
教师简介:
1、学习工作经历:
2013.9-2017.6,福州大学,数学与计算机科学学院计算机科学与技术专业, 工学学士
2017.9-2020.6,福州大学,数学与计算机科学学院计算机技术专业,工学硕士
2021.4-2024.3,日本筑波大学,情报理工学院计算机科学专业,工学博士
2024.8-今,福建农林大学未来技术学院任教
2、主讲课程
本科生课程:《计算机视觉与模式识别》,《人机交互》
硕士生课程:《人工智能导论》
3、研究方向和领域:
机器学习、生物信息、脑机交互、计算机视觉、联邦学习、隐私保护等。
4、发表论文:
[1] Dong Huang, Xiucai Ye*, Tetsuya Sakurai. Multi-party Collaborative Drug Discovery via Federated Learning[J]. Computers in Biology and Medicine,2024:108181. (IF: 7.7,JCR一区)
[2] Dong Huang, Xiucai Ye*, Ying Zhang, and Tetsuya Sakurai. Collaborative analysis for drug discovery by federated learning on non-IID data [J]. Methods, 2023, 219: 1-7.(IF: 4.8,JCR一区)
[3] Dong Huang, Xiucai Ye*, Tetsuya Sakurai. Knowledge distillation-based privacy-preserving data analysis[C]//Proceedings of the Conference on Research in Adaptive and Convergent Systems. 2022: 15-20.
[4] Tianyi Shi, Xiucai Ye*, Dong Huang*, Tetsuya Sakurai. Cancer subtype identification by multi-omics clustering based on interpretable feature and latent subspace learning. Methods, 2024, 231: 144-153. (IF:4.8, JCR一区)
[5] Tianyi Shi, Xiucai Ye*, Dong Huang*, Tetsuya Sakurai. Selecting interpretable features for cancer subtyping on multi-omics data. IEEE International Conference on Bioinformatics and Biomedicine 2024 (IEEE BIBM 2024). (CCF B会议)
[6] Yuzhen Niu, Dong Huang, Yiqing Shi, and Xiao Ke*. Siamese-Network-Based Learning to Rank for No-Reference 2D and 3D Image Quality Assessment, IEEE Access, vol. 7, 2019. (JCR一区)
[7] Peikun Chen, Yuzhen Niu*, Dong Huang. No-reference image quality assessment based on multi- scale convolutional neural networks[C]//Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 2. Springer International Publishing, 2019: 1202-1216.(EI)
5、联系方式:
电子邮箱:huangdong@fafu.edu.cn